Today's Hours: 8:00am - 10:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Jaton JC, Huser H, Braun DG, Givol D, Pecht I, Schlessinger J.
    Biochemistry. 1975 Dec 02;14(24):5312-5.
    The circular polarization of luminescence (CPL) emitted by tryptophan residues was used as a sensitive probe for measuring ligand-induced structural changes in a homogeneous type III pneumococcal antibody. A series of oligosaccharide ligands of increasing size derived from type III polysaccharide by partial acid hydrolysis was assayed. Ligand-induced changes in the circular polarization of fluorescence of the antibody were observed for all antigens tested, including tetra-, hexa-, and octasaccharides and a 16-residue oligomer, the largest changes being recorded upon interaction with the intact soluble type III pneumococcal (SIII) polysaccharide. When Fab' or F(ab')2 fragments were used instead of the antibody IgG for binding of SIII polysaccharide, the extent of conformational changes was decreased. This suggests interactions between Fab and Fc portions in the IgG molecule and subsequent conformational changes in Fc part upon antigen binding. Reduction of interchain disulfide bonds abolished the additional spectral changes attributed to the Fc part but not the changes observed in the Fab part, thus suggesting that the presence of the interchain disulfide bond in the hinge region is required for maximal CPL changes to occur. Small monovalent ligands, i.e., the tetra-, hexa-, and octasaccharides, were capable of inducing CPL changes in the Fab part of the antibody molecule as well as CPL changes attributed to the Fc portion. A multivalent ligand containing about 16 sugar residues appears to be the minimal antigenic size required for triggering conformational changes attributed to the Fc part, similar to those seen in the interaction with the whole polysaccharide antigen.
    Digital Access Access Options